Almost Tight Bounds for Online Hypergraph Matching (2402.08775v1)
Abstract: In the online hypergraph matching problem, hyperedges of size $k$ over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A na\"ive greedy algorithm for this problem achieves a competitive ratio of $\frac{1}{k}$. We show that no (randomized) online algorithm has competitive ratio better than $\frac{2+o(1)}{k}$. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio $\frac{1-o(1)}{\ln(k)}$ and show that no online algorithm can have competitive ratio strictly better than $\frac{1+o(1)}{\ln(k)}$. Lastly, we give a $\frac{1-o(1)}{\ln(k)}$ competitive algorithm for the fractional edge-weighted version of the problem under a free disposal assumption.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.