Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sampling Space-Saving Set Sketches (2402.08604v1)

Published 13 Feb 2024 in cs.DS and cs.DB

Abstract: Large, distributed data streams are now ubiquitous. High-accuracy sketches with low memory overhead have become the de facto method for analyzing this data. For instance, if we wish to group data by some label and report the largest counts using fixed memory, we need to turn to mergeable heavy hitter sketches that can provide highly accurate approximate counts. Similarly, if we wish to keep track of the number of distinct items in a single set spread across several streams using fixed memory, we can turn to mergeable count distinct sketches that can provide highly accurate set cardinalities. If we were to try to keep track of the cardinality of multiple sets and report only on the largest ones, maintaining individual count distinct sketches for each set can grow unwieldy, especially if the number of sets is not known in advance. We consider the natural combination of the heavy hitters problem with the count distinct problem, the heavy distinct hitters problem: given a stream of $(\ell, x)$ pairs, find all the labels $\ell$ that are paired with a large number of distinct items $x$ using only constant memory. No previous work on heavy distinct hitters has managed to be of practical use in the large, distributed data stream setting. We propose a new algorithm, the Sampling Space-Saving Set Sketch, which combines sketching and sampling techniques and has all the desired properties for size, speed, accuracy, mergeability, and invertibility. We compare our algorithm to several existing solutions to the heavy distinct hitters problem, and provide experimental results across several data sets showing the superiority of the new sketch.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.