Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Grounding LLMs For Robot Task Planning Using Closed-loop State Feedback (2402.08546v2)

Published 13 Feb 2024 in cs.RO

Abstract: Planning algorithms decompose complex problems into intermediate steps that can be sequentially executed by robots to complete tasks. Recent works have employed LLMs for task planning, using natural language to generate robot policies in both simulation and real-world environments. LLMs like GPT-4 have shown promising results in generalizing to unseen tasks, but their applicability is limited due to hallucinations caused by insufficient grounding in the robot environment. The robustness of LLMs in task planning can be enhanced with environmental state information and feedback. In this paper, we introduce a novel approach to task planning that utilizes two separate LLMs for high-level planning and low-level control, improving task-related success rates and goal condition recall. Our algorithm, \textit{BrainBody-LLM}, draws inspiration from the human neural system, emulating its brain-body architecture by dividing planning across two LLMs in a structured, hierarchical manner. BrainBody-LLM implements a closed-loop feedback mechanism, enabling learning from simulator errors to resolve execution errors in complex settings. We demonstrate the successful application of BrainBody-LLM in the VirtualHome simulation environment, achieving a 29\% improvement in task-oriented success rates over competitive baselines with the GPT-4 backend. Additionally, we evaluate our algorithm on seven complex tasks using a realistic physics simulator and the Franka Research 3 robotic arm, comparing it with various state-of-the-art LLMs. Our results show advancements in the reasoning capabilities of recent LLMs, which enable them to learn from raw simulator/controller errors to correct plans, making them highly effective in robotic task planning.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.