Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Systematic Review of Data-to-Text NLG (2402.08496v3)

Published 13 Feb 2024 in cs.CL, cs.AI, and cs.LG

Abstract: This systematic review undertakes a comprehensive analysis of current research on data-to-text generation, identifying gaps, challenges, and future directions within the field. Relevant literature in this field on datasets, evaluation metrics, application areas, multilingualism, LLMs, and hallucination mitigation methods is reviewed. Various methods for producing high-quality text are explored, addressing the challenge of hallucinations in data-to-text generation. These methods include re-ranking, traditional and neural pipeline architecture, planning architectures, data cleaning, controlled generation, and modification of models and training techniques. Their effectiveness and limitations are assessed, highlighting the need for universally applicable strategies to mitigate hallucinations. The review also examines the usage, popularity, and impact of datasets, alongside evaluation metrics, with an emphasis on both automatic and human assessment. Additionally, the evolution of data-to-text models, particularly the widespread adoption of transformer models, is discussed. Despite advancements in text quality, the review emphasizes the importance of research in low-resourced languages and the engineering of datasets in these languages to promote inclusivity. Finally, several application domains of data-to-text are highlighted, emphasizing their relevance in such domains. Overall, this review serves as a guiding framework for fostering innovation and advancing data-to-text generation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.