Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of a computational model for radiotherapy (2402.08494v1)

Published 13 Feb 2024 in math.NA and cs.NA

Abstract: Forward uncertainty quantification (UQ) for partial differential equations is a many-query task that requires a significant number of model evaluations. The objective of this work is to mitigate the computational cost of UQ for a 3D-1D multiscale computational model of microcirculation. To this purpose, we present a deep learning enhanced multi-fidelity Monte Carlo (DL-MFMC) method that integrates the information of a multiscale full-order model (FOM) with that coming from a deep learning enhanced non-intrusive projection-based reduced order model (ROM). The latter is constructed by leveraging on proper orthogonal decomposition (POD) and mesh-informed neural networks (previously developed by the authors and co-workers), integrating diverse architectures that approximate POD coefficients while introducing fine-scale corrections for the microstructures. The DL-MFMC approach provides a robust estimator of specific quantities of interest and their associated uncertainties, with optimal management of computational resources. In particular, the computational budget is efficiently divided between training and sampling, ensuring a reliable estimation process suitably exploiting the ROM speed-up. Here, we apply the DL-MFMC technique to accelerate the estimation of biophysical quantities regarding oxygen transfer and radiotherapy outcomes. Compared to classical Monte Carlo methods, the proposed approach shows remarkable speed-ups and a substantial reduction of the overall computational cost.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.