Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of a computational model for radiotherapy (2402.08494v1)

Published 13 Feb 2024 in math.NA and cs.NA

Abstract: Forward uncertainty quantification (UQ) for partial differential equations is a many-query task that requires a significant number of model evaluations. The objective of this work is to mitigate the computational cost of UQ for a 3D-1D multiscale computational model of microcirculation. To this purpose, we present a deep learning enhanced multi-fidelity Monte Carlo (DL-MFMC) method that integrates the information of a multiscale full-order model (FOM) with that coming from a deep learning enhanced non-intrusive projection-based reduced order model (ROM). The latter is constructed by leveraging on proper orthogonal decomposition (POD) and mesh-informed neural networks (previously developed by the authors and co-workers), integrating diverse architectures that approximate POD coefficients while introducing fine-scale corrections for the microstructures. The DL-MFMC approach provides a robust estimator of specific quantities of interest and their associated uncertainties, with optimal management of computational resources. In particular, the computational budget is efficiently divided between training and sampling, ensuring a reliable estimation process suitably exploiting the ROM speed-up. Here, we apply the DL-MFMC technique to accelerate the estimation of biophysical quantities regarding oxygen transfer and radiotherapy outcomes. Compared to classical Monte Carlo methods, the proposed approach shows remarkable speed-ups and a substantial reduction of the overall computational cost.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.