Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Visual Question Answering Instruction: Unlocking Multimodal Large Language Model To Domain-Specific Visual Multitasks (2402.08360v1)

Published 13 Feb 2024 in cs.CV

Abstract: Having revolutionized NLP applications, LLMs are expanding into the realm of multimodal inputs. Owing to their ability to interpret images, multimodal LLMs (MLLMs) have been primarily used for vision-language tasks. Currently, MLLMs have not yet been extended for domain-specific visual tasks, which require a more explicit understanding of visual information. We developed a method to transform domain-specific visual and vision-language datasets into a unified question answering format called Visual Question Answering Instruction (VQA-IN), thereby extending MLLM to domain-specific tasks. The VQA-IN was applied to train multiple MLLM architectures using smaller versions of LLMs (sLLMs). The experimental results indicated that the proposed method achieved a high score metric on domainspecific visual tasks while also maintaining its performance on vision-language tasks in a multitask manner.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.