Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

De la Vallée Poussin filtered polynomial approximation on the half line (2402.08358v1)

Published 13 Feb 2024 in math.NA and cs.NA

Abstract: On the half line we introduce a new sequence of near--best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier--Laguerre partial sums, which are filtered by using a de la Vall\'ee Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the $n$ Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter that we are going to apply. As $n\to\infty$, under simple assumptions on such parameters and on the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near--best approximation rate, for any locally continuous function on the semiaxis. \newline The theoretical results have been validated by the numerical experiments. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases we see a more localized approximation as well as a good reduction of the Gibbs phenomenon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. K-functionals, moduli of smoothness and weighted best approximation on the semiaxis. 1999.
  2. Extremal problems for polynomials with Laguerre weights. Approx. Theory IV, Academic Press, 1983.
  3. C. Laurita and G. Mastroianni. Lp𝑝{}_{p}start_FLOATSUBSCRIPT italic_p end_FLOATSUBSCRIPT-convergence of lagrange interpolation on the semiaxis. Acta Math. Hungar, 120(3):249–273, 2008.
  4. G. Mastroianni. Polynomial inequalities, functional spaces and best approximation on the real semiaxis with laguerre weights. Electronic Transactions on Numerical Analysis, 14:142–151, 2002.
  5. G. Mastroianni and G. V. Milovanovic. Interpolation Processes Basic Theory and Applications. Springer Monographs in Mathematics. Springer Verlag, Berlin, 2009.
  6. G. Mastroianni and G. V. Milovanovi.̧ Some numerical methods for second-kind Fredholm integral equations on the real semiaxis. IMA Journal of Numerical Analysis, 29(4):1046–1066, 2009.
  7. G. Mastroianni and G. Monegato. Truncated quadrature rules over (0,+∞)0(0,+\infty)( 0 , + ∞ ) and Nyström-type methods. SIAM Journal on Numerical Analysis, 41:1870 –1892, 2003.
  8. G. Mastroianni and I. Notarangelo. Some fourier-type operators for functions on unbounded intervals. Acta Math. Hungar., 127((4)):347 –375, 2010.
  9. G. Mastroianni and D. Occorsio. Lagrange interpolation at Laguerre zeros in some weighted uniform spaces. Acta Math. Hungar., 91((1-2)):27–52, 2001.
  10. G. Mastroianni and D. Occorsio. Some quadrature formulae with nonstandard weights. Jour. of Comput. and Appl. Math., 235:602–614, 2010.
  11. G. Mastroianni and J. Szabados. Polynomial approximation on infinite intervals with weights having inner zeros. Acta Math. Hungar, 96(3):221–258, 2002.
  12. G. Mastroianni and J. Szabados. Direct and converse polynomial approximation theorems on the real line with weights having zeros,. volume 283 of Pure Appl. Math. (Boca Raton), pages 287–306. 2007.
  13. G. Mastroianni and W. Themistoclakis. Uniform approximation on [−1,1]11[-1,1][ - 1 , 1 ] via discrete de la vallée poussin means. Acta Sci. Math., 74:147–170, 2008.
  14. G. Mastroianni and W. Themistoclakis. Pointwise estimates for polynomial approximation on the semiaxis. Jour. of Approx. Theory, 162(11):2078–2105, 2010.
  15. G. Mastroianni and P. Vértesi. Fourier sums and lagrange interpolation on (0,+∞)0(0,+\infty)( 0 , + ∞ ) and (−∞,+∞)(-\infty,+\infty)( - ∞ , + ∞ ). volume 283 of Pure Appl. Math. (Boca Raton), pages 307–344. 2007.
  16. E. Poiani. Mean Cesàro summability of Laguerre and hermite series. Transactions of the American Mathematical Society, 1972.
  17. G. Szegö. Orthogonal Polynomials, volume 4th Ed. American Mathematical Society, Providence, RI, 1975.
  18. W. Themistoclakis. Uniform approximation on [−1,1]11[-1,1][ - 1 , 1 ] via discrete de la vallée poussin means. Numer. Alg., 60:593–612, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.