Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Tight (Double) Exponential Bounds for Identification Problems: Locating-Dominating Set and Test Cover (2402.08346v3)

Published 13 Feb 2024 in cs.DS, cs.CC, and cs.DM

Abstract: We investigate fine-grained algorithmic aspects of identification problems in graphs and set systems, with a focus on Locating-Dominating Set and Test Cover. We prove the (tight) conditional lower bounds for these problems when parameterized by treewidth and solution as. Formally, \textsc{Locating-Dominating Set} (respectively, \textsc{Test Cover}) parameterized by the treewidth of the input graph (respectively, of the natural auxiliary graph) does not admit an algorithm running in time $2{2{o(tw)}} \cdot poly(n)$ (respectively, $2{2{o(tw)}} \cdot poly(|U| + |\mathcal{F}|))$. This result augments the small list of NP-Complete problems that admit double exponential lower bounds when parameterized by treewidth. Then, we first prove that \textsc{Locating-Dominating Set} does not admit an algorithm running in time $2{o(k2)} \cdot poly(n)$, nor a polynomial time kernelization algorithm that reduces the solution size and outputs a kernel with $2{o(k)}$ vertices, unless the \ETH\ fails. To the best of our knowledge, \textsc{Locating-Dominating Set} is the first problem that admits such an algorithmic lower-bound (with a quadratic function in the exponent) when parameterized by the solution size. Finally, we prove that \textsc{Test Cover} does not admit an algorithm running in time $2{2{o(k)}} \cdot poly(|U| + |\mathcal{F}|)$. This is also a rare example of the problem that admits a double exponential lower bound when parameterized by the solution size. We also present algorithms whose running times match the above lower bounds.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.