Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Cartesian Product Graphs with Laplacian Constraints (2402.08105v1)

Published 12 Feb 2024 in cs.LG and stat.ML

Abstract: Graph Laplacian learning, also known as network topology inference, is a problem of great interest to multiple communities. In Gaussian graphical models (GM), graph learning amounts to endowing covariance selection with the Laplacian structure. In graph signal processing (GSP), it is essential to infer the unobserved graph from the outputs of a filtering system. In this paper, we study the problem of learning Cartesian product graphs under Laplacian constraints. The Cartesian graph product is a natural way for modeling higher-order conditional dependencies and is also the key for generalizing GSP to multi-way tensors. We establish statistical consistency for the penalized maximum likelihood estimation (MLE) of a Cartesian product Laplacian, and propose an efficient algorithm to solve the problem. We also extend our method for efficient joint graph learning and imputation in the presence of structural missing values. Experiments on synthetic and real-world datasets demonstrate that our method is superior to previous GSP and GM methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: