Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow Matching on Assignment Manifolds (2402.07846v1)

Published 12 Feb 2024 in cs.LG and stat.ML

Abstract: This paper introduces a novel generative model for discrete distributions based on continuous normalizing flows on the submanifold of factorizing discrete measures. Integration of the flow gradually assigns categories and avoids issues of discretizing the latent continuous model like rounding, sample truncation etc. General non-factorizing discrete distributions capable of representing complex statistical dependencies of structured discrete data, can be approximated by embedding the submanifold into a the meta-simplex of all joint discrete distributions and data-driven averaging. Efficient training of the generative model is demonstrated by matching the flow of geodesics of factorizing discrete distributions. Various experiments underline the approach's broad applicability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: