Differentially Private Zeroth-Order Methods for Scalable Large Language Model Finetuning (2402.07818v6)
Abstract: Fine-tuning on task-specific datasets is a widely-embraced paradigm of harnessing the powerful capability of pretrained LLMs for various downstream tasks. Due to the popularity of LLMs fine-tuning and its accompanying privacy concerns, differentially private (DP) fine-tuning of pretrained LLMs has been widely used to safeguarding the privacy of task-specific datasets. Lying at the design core of DP LLM fine-tuning methods is the satisfactory tradeoff among privacy, utility, and scalability. Most existing methods build upon the seminal work of DP-SGD. Despite pushing the scalability of DP-SGD to its limit, DP-SGD-based fine-tuning methods are unfortunately limited by the inherent inefficiency of SGD. In this paper, we investigate the potential of DP zeroth-order methods for LLM pretraining, which avoids the scalability bottleneck of SGD by approximating the gradient with the more efficient zeroth-order gradient. Rather than treating the zeroth-order method as a drop-in replacement for SGD, this paper presents a comprehensive study both theoretically and empirically. First, we propose the stagewise DP zeroth-order method (DP-ZOSO) that dynamically schedules key hyperparameters. This design is grounded on the synergy between DP random perturbation and the gradient approximation error of the zeroth-order method, and its effect on fine-tuning trajectory. We provide theoretical analysis for both proposed methods. We conduct extensive empirical analysis on both encoder-only masked LLM and decoder-only autoregressive LLM, achieving impressive results in terms of scalability and utility regardless of the class of tasks (compared with DPZero, DP-ZOPO improves $4.5\%$ on SST-5, $5.5\%$ on MNLI with RoBERTa-Large and 9.2\% on CB, 3.9\% on BoolQ with OPT-2.7b when $\epsilon=4$, demonstrates more significant enhancement in performance on more complicated tasks).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.