Papers
Topics
Authors
Recent
2000 character limit reached

Quantum walks, the discrete wave equation and Chebyshev polynomials (2402.07809v1)

Published 12 Feb 2024 in quant-ph, cs.DS, and math.PR

Abstract: A quantum walk is the quantum analogue of a random walk. While it is relatively well understood how quantum walks can speed up random walk hitting times, it is a long-standing open question to what extent quantum walks can speed up the spreading or mixing rate of random walks on graphs. In this expository paper, inspired by a blog post by Terence Tao, we describe a particular perspective on this question that derives quantum walks from the discrete wave equation on graphs. This yields a description of the quantum walk dynamics as simply applying a Chebyshev polynomial to the random walk transition matrix. This perspective decouples the problem from its quantum origin, and highlights connections to earlier (non-quantum) work and the use of Chebyshev polynomials in random walk theory as in the Varopoulos-Carne bound. We illustrate the approach by proving a weak limit of the quantum walk dynamics on the lattice. This gives a different proof of the quadratically improved spreading behavior of quantum walks on lattices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.