Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CyberMetric: A Benchmark Dataset based on Retrieval-Augmented Generation for Evaluating LLMs in Cybersecurity Knowledge (2402.07688v2)

Published 12 Feb 2024 in cs.AI and cs.CR

Abstract: LLMs are increasingly used across various domains, from software development to cyber threat intelligence. Understanding all the different fields of cybersecurity, which includes topics such as cryptography, reverse engineering, and risk assessment, poses a challenge even for human experts. To accurately test the general knowledge of LLMs in cybersecurity, the research community needs a diverse, accurate, and up-to-date dataset. To address this gap, we present CyberMetric-80, CyberMetric-500, CyberMetric-2000, and CyberMetric-10000, which are multiple-choice Q&A benchmark datasets comprising 80, 500, 2000, and 10,000 questions respectively. By utilizing GPT-3.5 and Retrieval-Augmented Generation (RAG), we collected documents, including NIST standards, research papers, publicly accessible books, RFCs, and other publications in the cybersecurity domain, to generate questions, each with four possible answers. The results underwent several rounds of error checking and refinement. Human experts invested over 200 hours validating the questions and solutions to ensure their accuracy and relevance, and to filter out any questions unrelated to cybersecurity. We have evaluated and compared 25 state-of-the-art LLM models on the CyberMetric datasets. In addition to our primary goal of evaluating LLMs, we involved 30 human participants to solve CyberMetric-80 in a closed-book scenario. The results can serve as a reference for comparing the general cybersecurity knowledge of humans and LLMs. The findings revealed that GPT-4o, GPT-4-turbo, Mixtral-8x7B-Instruct, Falcon-180B-Chat, and GEMINI-pro 1.0 were the best-performing LLMs. Additionally, the top LLMs were more accurate than humans on CyberMetric-80, although highly experienced human experts still outperformed small models such as Llama-3-8B, Phi-2 or Gemma-7b.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: