Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximating the Maximum Independent Set of Convex Polygons with a Bounded Number of Directions (2402.07666v1)

Published 12 Feb 2024 in cs.CG and cs.DS

Abstract: In the maximum independent set of convex polygons problem, we are given a set of $n$ convex polygons in the plane with the objective of selecting a maximum cardinality subset of non-overlapping polygons. Here we study a special case of the problem where the edges of the polygons can take at most $d$ fixed directions. We present an $8d/3$-approximation algorithm for this problem running in time $O((nd){O(d4d)})$. The previous-best polynomial-time approximation (for constant $d$) was a classical $n\varepsilon$ approximation by Fox and Pach [SODA'11] that has recently been improved to a $OPT{\varepsilon}$-approximation algorithm by Cslovjecsek, Pilipczuk and W\k{e}grzycki [SODA '24], which also extends to an arbitrary set of convex polygons. Our result builds on, and generalizes the recent constant factor approximation algorithms for the maximum independent set of axis-parallel rectangles problem (which is a special case of our problem with $d=2$) by Mitchell [FOCS'21] and G\'{a}lvez, Khan, Mari, M\"{o}mke, Reddy, and Wiese [SODA'22].

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.