Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint Source-Channel Coding for Wireless Image Transmission: A Deep Compressed-Sensing Based Method (2402.07162v1)

Published 11 Feb 2024 in cs.CE

Abstract: Nowadays, the demand for image transmission over wireless networks has surged significantly. To meet the need for swift delivery of high-quality images through time-varying channels with limited bandwidth, the development of efficient transmission strategies and techniques for preserving image quality is of importance. This paper introduces an innovative approach to Joint Source-Channel Coding (JSCC) tailored for wireless image transmission. It capitalizes on the power of Compressed Sensing (CS) to achieve superior compression and resilience to channel noise. In this method, the process begins with the compression of images using a block-based CS technique implemented through a Convolutional Neural Network (CNN) structure. Subsequently, the images are encoded by directly mapping image blocks to complex-valued channel input symbols. Upon reception, the data is decoded to recover the channel-encoded information, effectively removing the noise introduced during transmission. To finalize the process, a novel CNN-based reconstruction network is employed to restore the original image from the channel-decoded data. The performance of the proposed method is assessed using the CIFAR-10 and Kodak datasets. The results illustrate a substantial improvement over existing JSCC frameworks when assessed in terms of metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) across various channel Signal-to-Noise Ratios (SNRs) and channel bandwidth values. These findings underscore the potential of harnessing CNN-based CS for the development of deep JSCC algorithms tailored for wireless image transmission.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.