Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on the Power of Future Prediction in Partially Observable Environments (2402.07102v2)

Published 11 Feb 2024 in cs.LG and cs.AI

Abstract: Learning good representations of historical contexts is one of the core challenges of reinforcement learning (RL) in partially observable environments. While self-predictive auxiliary tasks have been shown to improve performance in fully observed settings, their role in partial observability remains underexplored. In this empirical study, we examine the effectiveness of self-predictive representation learning via future prediction, i.e., predicting next-step observations as an auxiliary task for learning history representations, especially in environments with long-term dependencies. We test the hypothesis that future prediction alone can produce representations that enable strong RL performance. To evaluate this, we introduce $\texttt{DRL}2$, an approach that explicitly decouples representation learning from reinforcement learning, and compare this approach to end-to-end training across multiple benchmarks requiring long-term memory. Our findings provide evidence that this hypothesis holds across different network architectures, reinforcing the idea that future prediction performance serves as a reliable indicator of representation quality and contributes to improved RL performance.

Summary

We haven't generated a summary for this paper yet.