Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Clients Collaborate: Flexible Differentially Private Federated Learning with Guaranteed Improvement of Utility-Privacy Trade-off (2402.07002v2)

Published 10 Feb 2024 in cs.LG, cs.AI, and cs.CR

Abstract: To defend against privacy leakage of user data, differential privacy is widely used in federated learning, but it is not free. The addition of noise randomly disrupts the semantic integrity of the model and this disturbance accumulates with increased communication rounds. In this paper, we introduce a novel federated learning framework with rigorous privacy guarantees, named FedCEO, designed to strike a trade-off between model utility and user privacy by letting clients ''Collaborate with Each Other''. Specifically, we perform efficient tensor low-rank proximal optimization on stacked local model parameters at the server, demonstrating its capability to flexibly truncate high-frequency components in spectral space. This capability implies that our FedCEO can effectively recover the disrupted semantic information by smoothing the global semantic space for different privacy settings and continuous training processes. Moreover, we improve the SOTA utility-privacy trade-off bound by order of $\sqrt{d}$, where $d$ is the input dimension. We illustrate our theoretical results with experiments on representative datasets and observe significant performance improvements and strict privacy guarantees under different privacy settings. The code is available at https://github.com/6lyc/FedCEO_Collaborate-with-Each-Other.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com