Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects (2402.06906v1)

Published 10 Feb 2024 in cs.RO

Abstract: Robotics hand/grippers nowadays are not limited to manufacturing lines; instead, they are widely utilized in cluttered environments, such as restaurants, farms, and warehouses. In such scenarios, they need to deal with high uncertainty of the grasped objects' shapes, postures, surfaces, and material properties, which requires complex integration of sensing and decision-making process. On the other hand, integrating soft materials into the gripper's design may tolerate the above uncertainties and reduce complexity in control. In this paper, we introduce ROSE, a novel soft gripper that can embrace the object and squeeze it by buckling a funnel-liked thin-walled soft membrane around the object by simple rotation of the base. Thanks to this design, ROSE hand can adapt to a wide range of objects that can fit in the funnel and handle with gentle gripping force. Regardless of this, ROSE can generate a high lift force (up to 33kgf) while significantly reducing the normal pressure on the gripped objects. In our experiment, a 198g ROSE can be integrated into a robot arm with a single actuation and successfully lift various types of objects, even after 400,000 trials. The embracing mechanism helps reduce the dependence of friction between the object and the membrane, as ROSE could pick up a chicken egg submerged inside an olive oil tank. We also report a feasible design for equipping the ROSE hand with tactile sensing while appealing to the scalability of the design to fit a wide range of objects. Video: https://youtu.be/E1wAI09LaoY

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. Turco, V. Bo, M. Pozzi, A. Rizzo, and D. Prattichizzo, “Grasp planning with a soft reconfigurable gripper exploiting embedded and environmental constraints,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5215–5222, 2021.
  2. T. Takahashi, M. Suzuki, and S. Aoyagi, “Octopus bioinspired vacuum gripper with micro bumps,” in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2016, pp. 508–511.
  3. L. Xu and G. Gu, “Bioinspired venus flytrap : A dielectric elastomer actuated soft gripper,” in 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2017, pp. 1–3.
  4. M. Wu, X. Zheng, R. Liu, N. Hou, W. H. Afridi, R. H. Afridi, X. Guo, J. Wu, C. Wang, and G. Xie, “Glowing sucker octopus (stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing,” Advanced Science, vol. 9, no. 17, p. 2104382, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202104382
  5. Y. Li, Y. Chen, T. Ren, Y. Li, and S. h. Choi, “Precharged pneumatic soft actuators and their applications to untethered soft robots,” Soft Robotics, vol. 5, no. 5, pp. 567–575, 2018, pMID: 29924683. [Online]. Available: https://doi.org/10.1089/soro.2017.0090
  6. M. E. Giannaccini, I. Georgilas, I. Horsfield, B. H. Peiris, A. Lenz, A. G. Pipe, and S. Dogramadzi, “A variable compliance, soft gripper,” Autonomous Robots, vol. 36, pp. 93–107, 2014.
  7. W. R. T. Roderick, M. R. Cutkosky, and D. Lentink, “Bird-inspired dynamic grasping and perching in arboreal environments,” Science Robotics, vol. 6, no. 61, p. eabj7562, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abj7562
  8. Z. Zhang, X. Ni, W. Gao, H. Shen, M. Sun, G. Guo, H. Wu, and S. Jiang, “Pneumatically controlled reconfigurable bistable bionic flower for robotic gripper,” Soft Robotics, vol. 9, no. 4, pp. 657–668, 2022, pMID: 34287072. [Online]. Available: https://doi.org/10.1089/soro.2020.0200
  9. F. Hu, L. Lyu, and Y. He, “A 3d printed paper-based thermally driven soft robotic gripper inspired by cabbage,” International Journal of Precision Engineering and Manufacturing, vol. 20, pp. 1915–1928, 2019. [Online]. Available: https://doi.org/10.1007/s12541-019-00199-6
  10. S. Makita and W. Wan, “A survey of robotic caging and its applications,” Advanced Robotics, vol. 31, no. 19-20, pp. 1071–1085, 2017. [Online]. Available: https://doi.org/10.1080/01691864.2017.1371075
  11. V. A. Ho, “Grasping by wrapping: Mechanical design and evaluation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 6013–6019.
  12. B. Mazzolai et al., “Roadmap on soft robotics: multifunctionality, adaptability and growth without borders,” Multifunctional Materials, vol. 5, no. 3, p. 032001, aug 2022. [Online]. Available: https://dx.doi.org/10.1088/2399-7532/ac4c95
  13. S. Liu, F. Wang, Z. Liu, W. Zhang, Y. Tian, and D. Zhang, “A two-finger soft-robotic gripper with enveloping and pinching grasping modes,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 146–155, 2021.
  14. A. Pagoli, F. Chapelle, J. A. Corrales, Y. Mezouar, and Y. Lapusta, “A soft robotic gripper with an active palm and reconfigurable fingers for fully dexterous in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7706–7713, 2021.
  15. W. Hu and G. Alici, “Bioinspired three-dimensional-printed helical soft pneumatic actuators and their characterization,” Soft Robotics, vol. 7, pp. 267–282, 2020.
  16. P. Van Nguyen, Q. K. Luu, Y. Takamura, and V. A. Ho, “Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 9213–9219.
  17. S. Li, J. J. Stampfli, H. J. Xu, E. Malkin, E. V. Diaz, D. Rus, and R. J. Wood, “A vacuum-driven origami “magic-ball” soft gripper,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 7401–7408.
  18. L. I. Haili, Z. Shuai, Z. Xuanhao, Z. Wumian, and Y. A. O. Jiantao, “A 0 . 5-meter-scale, high-load, soft-enclosed gripper capable of grasping the human body,” Sci. China Technol. Sci., 2023.
  19. H. Li, J. Yao, C. Wei, P. Zhou, Y. Xu, and Y. Zhao, “An untethered soft robotic gripper with high payload-to-weight ratio,” Mechanism and Machine Theory, vol. 158, p. 104226, 2021. [Online]. Available: https://doi.org/10.1016/j.mechmachtheory.2020.104226
  20. P. Pedro, C. Ananda, P. B. Rafael, A. R. Carlos, and B. C. Alexandre, “Closed structure soft robotic gripper,” 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018, vol. 2, pp. 66–70, 2018.
  21. Y. Hao, S. Biswas, E. W. Hawkes, T. Wang, M. Zhu, L. Wen, and Y. Visell, “A multimodal, enveloping soft gripper: Shape conformation, bioinspired adhesion, and expansion-driven suction,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 350–362, 2021.
  22. J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the jamming of granular material,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 341–350, 2012.
  23. S. D’Avella, P. Tripicchio, and C. A. Avizzano, “A study on picking objects in cluttered environments: Exploiting depth features for a custom low-cost universal jamming gripper,” Robotics and Computer-Integrated Manufacturing, vol. 63, p. 101888, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0736584519307276
  24. S. Licht, E. Collins, M. L. Mendes, and C. Baxter, “Stronger at depth: Jamming grippers as deep sea sampling tools,” Soft Robotics, vol. 4, no. 4, pp. 305–316, 2017, pMID: 29251570. [Online]. Available: https://doi.org/10.1089/soro.2017.0028
  25. N. Kuppuswamy, A. Alspach, A. Uttamchandani, S. Creasey, T. Ikeda, and R. Tedrake, “Soft-bubble grippers for robust and perceptive manipulation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 9917–9924.
  26. Z. Wang, H. Furuta, S. Hirai, and S. Kawamura, “A scooping-binding robotic gripper for handling various food products,” Frontiers in Robotics and AI, vol. 8, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frobt.2021.640805
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Son Tien Bui (3 papers)
  2. Shinya Kawano (1 paper)
  3. Van Anh Ho (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.