Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feed-Forward Neural Networks as a Mixed-Integer Program (2402.06697v1)

Published 9 Feb 2024 in cs.LG, cs.AI, and math.OC

Abstract: Deep neural networks (DNNs) are widely studied in various applications. A DNN consists of layers of neurons that compute affine combinations, apply nonlinear operations, and produce corresponding activations. The rectified linear unit (ReLU) is a typical nonlinear operator, outputting the max of its input and zero. In scenarios like max pooling, where multiple input values are involved, a fixed-parameter DNN can be modeled as a mixed-integer program (MIP). This formulation, with continuous variables representing unit outputs and binary variables for ReLU activation, finds applications across diverse domains. This study explores the formulation of trained ReLU neurons as MIP and applies MIP models for training neural networks (NNs). Specifically, it investigates interactions between MIP techniques and various NN architectures, including binary DNNs (employing step activation functions) and binarized DNNs (with weights and activations limited to $-1,0,+1$). The research focuses on training and evaluating proposed approaches through experiments on handwritten digit classification models. The comparative study assesses the performance of trained ReLU NNs, shedding light on the effectiveness of MIP formulations in enhancing training processes for NNs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube