Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bakry-Émery-Ricci curvature: An alternative network geometry measure in the expanding toolbox of graph Ricci curvatures (2402.06616v1)

Published 9 Feb 2024 in physics.comp-ph and cs.DM

Abstract: The characterization of complex networks with tools originating in geometry, for instance through the statistics of so-called Ricci curvatures, is a well established tool of network science. There exist various types of such Ricci curvatures, capturing different aspects of network geometry. In the present work, we investigate Bakry-\'Emery-Ricci curvature, a notion of discrete Ricci curvature that has been studied much in geometry, but so far has not been applied to networks. We explore on standard classes of artificial networks as well as on selected empirical ones to what the statistics of that curvature are similar to or different from that of other curvatures, how it is correlated to other important network measures, and what it tells us about the underlying network. We observe that most vertices typically have negative curvature. Random and small-world networks exhibit a narrow curvature distribution whereas other classes and most of the real-world networks possess a wide curvature distribution. When we compare Bakry-\'Emery-Ricci curvature with two other discrete notions of Ricci-curvature, Forman-Ricci and Ollivier-Ricci curvature for both model and real-world networks, we observe a high positive correlation between Bakry-\'Emery-Ricci and both Forman-Ricci and Ollivier-Ricci curvature, and in particular with the augmented version of Forman-Ricci curvature. Bakry-\'Emery-Ricci curvature also exhibits a high negative correlation with the vertex centrality measure and degree for most of the model and real-world networks. However, it does not correlate with the clustering coefficient. Also, we investigate the importance of vertices with highly negative curvature values to maintain communication in the network. The computational time for Bakry-\'Emery-Ricci curvature is shorter than that required for Ollivier-Ricci curvature but higher than for Augmented Forman-Ricci curvature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.