Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bakry-Émery-Ricci curvature: An alternative network geometry measure in the expanding toolbox of graph Ricci curvatures (2402.06616v1)

Published 9 Feb 2024 in physics.comp-ph and cs.DM

Abstract: The characterization of complex networks with tools originating in geometry, for instance through the statistics of so-called Ricci curvatures, is a well established tool of network science. There exist various types of such Ricci curvatures, capturing different aspects of network geometry. In the present work, we investigate Bakry-\'Emery-Ricci curvature, a notion of discrete Ricci curvature that has been studied much in geometry, but so far has not been applied to networks. We explore on standard classes of artificial networks as well as on selected empirical ones to what the statistics of that curvature are similar to or different from that of other curvatures, how it is correlated to other important network measures, and what it tells us about the underlying network. We observe that most vertices typically have negative curvature. Random and small-world networks exhibit a narrow curvature distribution whereas other classes and most of the real-world networks possess a wide curvature distribution. When we compare Bakry-\'Emery-Ricci curvature with two other discrete notions of Ricci-curvature, Forman-Ricci and Ollivier-Ricci curvature for both model and real-world networks, we observe a high positive correlation between Bakry-\'Emery-Ricci and both Forman-Ricci and Ollivier-Ricci curvature, and in particular with the augmented version of Forman-Ricci curvature. Bakry-\'Emery-Ricci curvature also exhibits a high negative correlation with the vertex centrality measure and degree for most of the model and real-world networks. However, it does not correlate with the clustering coefficient. Also, we investigate the importance of vertices with highly negative curvature values to maintain communication in the network. The computational time for Bakry-\'Emery-Ricci curvature is shorter than that required for Ollivier-Ricci curvature but higher than for Augmented Forman-Ricci curvature.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.