Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Differentially Private Subspace Estimation in a Distribution-Free Setting (2402.06465v3)

Published 9 Feb 2024 in cs.LG, cs.CR, and cs.DS

Abstract: Private data analysis faces a significant challenge known as the curse of dimensionality, leading to increased costs. However, many datasets possess an inherent low-dimensional structure. For instance, during optimization via gradient descent, the gradients frequently reside near a low-dimensional subspace. If the low-dimensional structure could be privately identified using a small amount of points, we could avoid paying for the high ambient dimension. On the negative side, Dwork, Talwar, Thakurta, and Zhang (STOC 2014) proved that privately estimating subspaces, in general, requires an amount of points that has a polynomial dependency on the dimension. However, their bounds do not rule out the possibility to reduce the number of points for "easy" instances. Yet, providing a measure that captures how much a given dataset is "easy" for this task turns out to be challenging, and was not properly addressed in prior works. Inspired by the work of Singhal and Steinke (NeurIPS 2021), we provide the first measures that quantify "easiness" as a function of multiplicative singular-value gaps in the input dataset, and support them with new upper and lower bounds. In particular, our results determine the first types of gaps that are sufficient and necessary for estimating a subspace with an amount of points that is independent of the dimension. Furthermore, we realize our upper bounds using a practical algorithm and demonstrate its advantage in high-dimensional regimes compared to prior approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)