Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 70 tok/s
Gemini 2.5 Flash 169 tok/s Pro
Gemini 2.5 Pro 47 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adaptive multi-gradient methods for quasiconvex vector optimization and applications to multi-task learning (2402.06224v1)

Published 9 Feb 2024 in math.OC and cs.LG

Abstract: We present an adaptive step-size method, which does not include line-search techniques, for solving a wide class of nonconvex multiobjective programming problems on an unbounded constraint set. We also prove convergence of a general approach under modest assumptions. More specifically, the convexity criterion might not be satisfied by the objective function. Unlike descent line-search algorithms, it does not require an initial step-size to be determined by a previously determined Lipschitz constant. The process's primary characteristic is its gradual step-size reduction up until a predetermined condition is met. It can be specifically applied to offer an innovative multi-gradient projection method for unbounded constrained optimization issues. Preliminary findings from a few computational examples confirm the accuracy of the strategy. We apply the proposed technique to some multi-task learning experiments to show its efficacy for large-scale challenges.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: