Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PULSE: Parametric Hardware Units for Low-power Sparsity-Aware Convolution Engine (2402.06210v1)

Published 9 Feb 2024 in cs.AR

Abstract: Spiking Neural Networks (SNNs) have become popular for their more bio-realistic behavior than Artificial Neural Networks (ANNs). However, effectively leveraging the intrinsic, unstructured sparsity of SNNs in hardware is challenging, especially due to the variability in sparsity across network layers. This variability depends on several factors, including the input dataset, encoding scheme, and neuron model. Most existing SNN accelerators fail to account for the layer-specific workloads of an application (model + dataset), leading to high energy consumption. To address this, we propose a design-time parametric hardware generator that takes layer-wise sparsity and the number of processing elements as inputs and synthesizes the corresponding hardware. The proposed design compresses sparse spike trains using a priority encoder and efficiently shifts the activations across the network's layers. We demonstrate the robustness of our proposed approach by first profiling a given application's characteristics followed by performing efficient resource allocation. Results on a Xilinx Kintex FPGA (Field Programmable Gate Arrays) using MNIST, FashionMNIST, and SVHN datasets show a 3.14x improvement in accelerator efficiency (FPS/W) compared to a sparsity-oblivious systolic array-based accelerator. Compared to the most recent sparsity-aware work, our solution improves efficiency by 1.72x.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. R. Yin, A. Moitra, A. Bhattacharjee, Y. Kim, and P. Panda, “Sata: Sparsity-aware training accelerator for spiking neural networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.
  2. Z. Wang, Y. Zhong, X. Cui, Y. Kuang, and Y. Wang, “A spiking neural network accelerator based on ping-pong architecture with sparse spike and weight,” in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2023.
  3. R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, et al., “Magnet: A modular accelerator generator for neural networks,” in 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2019.
  4. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-sparse convolutional neural networks,” ACM SIGARCH computer architecture news, vol. 45, no. 2, pp. 27–40, 2017.
  5. Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.
  6. Z. Shen, F. Tian, J. Jiang, C. Fang, X. Xue, J. Yang, and M. Sawan, “Nbssn: A neuromorphic binary single-spike neural network for efficient edge intelligence,” in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2023.
  7. H. Liu, Y. Chen, Z. Zeng, M. Zhang, and H. Qu, “A low power and low latency fpga-based spiking neural network accelerator,” in 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2023.
  8. A. J. Leigh, M. Heidarpur, and M. Mirhassani, “Selective input sparsity in spiking neural networks for pattern classification,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 799–803, IEEE, 2022.
  9. A. J. Leigh, M. Heidarpur, and M. Mirhassani, “Digital hardware implementations of spiking neural networks with selective input sparsity for edge inferences in controlled image acquisition environments,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
  10. I. Aliyev, K. Svoboda, and T. Adegbija, “Design space exploration of sparsity-aware application-specific spiking neural network accelerators,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023.
  11. J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “Efficient hardware acceleration of sparsely active convolutional spiking neural networks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 3767–3778, 2022.
  12. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018.
  13. A. Di Mauro, A. S. Prasad, Z. Huang, M. Spallanzani, F. Conti, and L. Benini, “Sne: an energy-proportional digital accelerator for sparse event-based convolutions,” in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 825–830, IEEE, 2022.
  14. W. Ye, Y. Chen, and Y. Liu, “The implementation and optimization of neuromorphic hardware for supporting spiking neural networks with mlp and cnn topologies,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 2, pp. 448–461, 2022.
  15. J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural networks using lessons from deep learning,” Proceedings of the IEEE, 2023.
  16. Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu, “Differentiable spike: Rethinking gradient-descent for training spiking neural networks,” Advances in Neural Information Processing Systems, vol. 34, pp. 23426–23439, 2021.
  17. Z. Pan, J. Wu, M. Zhang, H. Li, and Y. Chua, “Neural population coding for effective temporal classification,” in 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.