Papers
Topics
Authors
Recent
2000 character limit reached

Selective Forgetting: Advancing Machine Unlearning Techniques and Evaluation in Language Models

Published 8 Feb 2024 in cs.CL and cs.AI | (2402.05813v2)

Abstract: This paper explores Machine Unlearning (MU), an emerging field that is gaining increased attention due to concerns about neural models unintentionally remembering personal or sensitive information. We present SeUL, a novel method that enables selective and fine-grained unlearning for LLMs. Unlike previous work that employs a fully reversed training objective in unlearning, SeUL minimizes the negative impact on the capability of LLMs, particularly in terms of generation. Furthermore, we introduce two innovative evaluation metrics, sensitive extraction likelihood (S-EL) and sensitive memorization accuracy (S-MA), specifically designed to assess the effectiveness of forgetting sensitive information. In support of the unlearning framework, we propose efficient automatic online and offline sensitive span annotation methods. The online selection method, based on language probability scores, ensures computational efficiency, while the offline annotation involves a two-stage LLM-based process for robust verification. In summary, this paper contributes a novel selective unlearning method (SeUL), introduces specialized evaluation metrics (S-EL and S-MA) for assessing sensitive information forgetting, and proposes automatic online and offline sensitive span annotation methods to support the overall unlearning framework and evaluation process.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.