Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Temperature Scaling and Conformal Prediction of Deep Classifiers (2402.05806v4)

Published 8 Feb 2024 in cs.LG and stat.ML

Abstract: In many classification applications, the prediction of a deep neural network (DNN) based classifier needs to be accompanied by some confidence indication. Two popular approaches for that aim are: 1) Calibration: modifies the classifier's softmax values such that the maximal value better estimates the correctness probability; and 2) Conformal Prediction (CP): produces a prediction set of candidate labels that contains the true label with a user-specified probability, guaranteeing marginal coverage but not, e.g., per class coverage. In practice, both types of indications are desirable, yet, so far the interplay between them has not been investigated. Focusing on the ubiquitous Temperature Scaling (TS) calibration, we start this paper with an extensive empirical study of its effect on prominent CP methods. We show that while TS calibration improves the class-conditional coverage of adaptive CP methods, surprisingly, it negatively affects their prediction set sizes. Motivated by this behavior, we explore the effect of TS on CP beyond its calibration application and reveal an intriguing trend under which it allows to trade prediction set size and conditional coverage of adaptive CP methods. Then, we establish a mathematical theory that explains the entire non-monotonic trend. Finally, based on our experiments and theory, we offer simple guidelines for practitioners to effectively combine adaptive CP with calibration, aligned with user-defined goals.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: