Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

UAV-Rain1k: A Benchmark for Raindrop Removal from UAV Aerial Imagery (2402.05773v3)

Published 8 Feb 2024 in cs.CV

Abstract: Raindrops adhering to the lens of UAVs can obstruct visibility of the background scene and degrade image quality. Despite recent progress in image deraining methods and datasets, there is a lack of focus on raindrop removal from UAV aerial imagery due to the unique challenges posed by varying angles and rapid movement during drone flight. To fill the gap in this research, we first construct a new benchmark dataset for removing raindrops from UAV images, called UAV-Rain1k. In this letter, we provide a dataset generation pipeline, which includes modeling raindrop shapes using Blender, collecting background images from various UAV angles, random sampling of rain masks and etc. Based on the proposed benchmark, we further present a comprehensive evaluation of existing representative image deraining algorithms, and reveal future research opportunities worth exploring. The proposed dataset is publicly available at https://github.com/cschenxiang/UAV-Rain1k.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.