Papers
Topics
Authors
Recent
2000 character limit reached

Paralinguistics-Aware Speech-Empowered Large Language Models for Natural Conversation (2402.05706v3)

Published 8 Feb 2024 in cs.CL, cs.SD, and eess.AS

Abstract: Recent work shows promising results in expanding the capabilities of LLMs (LLM) to directly understand and synthesize speech. However, an LLM-based strategy for modeling spoken dialogs remains elusive, calling for further investigation. This paper introduces an extensive speech-text LLM framework, the Unified Spoken Dialog Model (USDM), designed to generate coherent spoken responses with naturally occurring prosodic features relevant to the given input speech without relying on explicit automatic speech recognition (ASR) or text-to-speech (TTS) systems. We have verified the inclusion of prosody in speech tokens that predominantly contain semantic information and have used this foundation to construct a prosody-infused speech-text model. Additionally, we propose a generalized speech-text pretraining scheme that enhances the capture of cross-modal semantics. To construct USDM, we fine-tune our speech-text model on spoken dialog data using a multi-step spoken dialog template that stimulates the chain-of-reasoning capabilities exhibited by the underlying LLM. Automatic and human evaluations on the DailyTalk dataset demonstrate that our approach effectively generates natural-sounding spoken responses, surpassing previous and cascaded baselines. Our code and checkpoints are available at https://github.com/naver-ai/usdm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.