Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving (2402.05598v1)

Published 8 Feb 2024 in math.NA and cs.NA

Abstract: Deep learning solvers for partial differential equations typically have limited accuracy. We propose to overcome this problem by using them as preconditioners. More specifically, we apply discretization-invariant neural operators to learn preconditioners for the flexible conjugate gradient method (FCG). Architecture paired with novel loss function and training scheme allows for learning efficient preconditioners that can be used across different resolutions. On the theoretical side, FCG theory allows us to safely use nonlinear preconditioners that can be applied in $O(N)$ operations without constraining the form of the preconditioners matrix. To justify learning scheme components (the loss function and the way training data is collected) we perform several ablation studies. Numerical results indicate that our approach favorably compares with classical preconditioners and allows to reuse of preconditioners learned for lower resolution to the higher resolution data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.