Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving (2402.05598v1)

Published 8 Feb 2024 in math.NA and cs.NA

Abstract: Deep learning solvers for partial differential equations typically have limited accuracy. We propose to overcome this problem by using them as preconditioners. More specifically, we apply discretization-invariant neural operators to learn preconditioners for the flexible conjugate gradient method (FCG). Architecture paired with novel loss function and training scheme allows for learning efficient preconditioners that can be used across different resolutions. On the theoretical side, FCG theory allows us to safely use nonlinear preconditioners that can be applied in $O(N)$ operations without constraining the form of the preconditioners matrix. To justify learning scheme components (the loss function and the way training data is collected) we perform several ablation studies. Numerical results indicate that our approach favorably compares with classical preconditioners and allows to reuse of preconditioners learned for lower resolution to the higher resolution data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.