Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint End-to-End Image Compression and Denoising: Leveraging Contrastive Learning and Multi-Scale Self-ONNs (2402.05582v1)

Published 8 Feb 2024 in eess.IV, cs.CV, and cs.MM

Abstract: Noisy images are a challenge to image compression algorithms due to the inherent difficulty of compressing noise. As noise cannot easily be discerned from image details, such as high-frequency signals, its presence leads to extra bits needed for compression. Since the emerging learned image compression paradigm enables end-to-end optimization of codecs, recent efforts were made to integrate denoising into the compression model, relying on clean image features to guide denoising. However, these methods exhibit suboptimal performance under high noise levels, lacking the capability to generalize across diverse noise types. In this paper, we propose a novel method integrating a multi-scale denoiser comprising of Self Organizing Operational Neural Networks, for joint image compression and denoising. We employ contrastive learning to boost the network ability to differentiate noise from high frequency signal components, by emphasizing the correlation between noisy and clean counterparts. Experimental results demonstrate the effectiveness of the proposed method both in rate-distortion performance, and codec speed, outperforming the current state-of-the-art.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.