Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training-Free Message Passing for Learning on Hypergraphs (2402.05569v6)

Published 8 Feb 2024 in cs.LG, cs.AI, eess.SP, and stat.ML

Abstract: Hypergraphs are crucial for modelling higher-order interactions in real-world data. Hypergraph neural networks (HNNs) effectively utilise these structures by message passing to generate informative node features for various downstream tasks like node classification. However, the message passing module in existing HNNs typically requires a computationally intensive training process, which limits their practical use. To tackle this challenge, we propose an alternative approach by decoupling the usage of hypergraph structural information from the model learning stage. This leads to a novel training-free message passing module, named TF-MP-Module, which can be precomputed in the data preprocessing stage, thereby reducing the computational burden. We refer to the hypergraph neural network equipped with our TF-MP-Module as TF-HNN. We theoretically support the efficiency and effectiveness of TF-HNN by showing that: 1) It is more training-efficient compared to existing HNNs; 2) It utilises as much information as existing HNNs for node feature generation; and 3) It is robust against the oversmoothing issue while using long-range interactions. Experiments based on seven real-world hypergraph benchmarks in node classification and hyperlink prediction show that, compared to state-of-the-art HNNs, TF-HNN exhibits both competitive performance and superior training efficiency. Specifically, on the large-scale benchmark, Trivago, TF-HNN outperforms the node classification accuracy of the best baseline by 10% with just 1% of the training time of that baseline.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: