Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning (2402.05541v2)

Published 8 Feb 2024 in cs.LG, cs.AI, and cs.DC

Abstract: Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices. However, it faces challenges such as statistical heterogeneity and susceptibility to adversarial attacks, which can impact model robustness and fairness. Personalized FL attempts to provide some relief by customizing models for individual clients. However, it falls short in addressing server-side aggregation vulnerabilities. We introduce a novel method called \textbf{FedAA}, which optimizes client contributions via \textbf{A}daptive \textbf{A}ggregation to enhance model robustness against malicious clients and ensure fairness across participants in non-identically distributed settings. To achieve this goal, we propose an approach involving a Deep Deterministic Policy Gradient-based algorithm for continuous control of aggregation weights, an innovative client selection method based on model parameter distances, and a reward mechanism guided by validation set performance. Empirically, extensive experiments demonstrate that, in terms of robustness, \textbf{FedAA} outperforms the state-of-the-art methods, while maintaining comparable levels of fairness, offering a promising solution to build resilient and fair federated systems. Our code is available at https://github.com/Gp1g/FedAA.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com