Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SeAr PC: Sensitivity Enhanced Arbitrary Polynomial Chaos (2402.05507v1)

Published 8 Feb 2024 in math.NA and cs.NA

Abstract: This paper presents a method for performing Uncertainty Quantification in high-dimensional uncertain spaces by combining arbitrary polynomial chaos with a recently proposed scheme for sensitivity enhancement (1). Including available sensitivity information offers a way to mitigate the curse of dimensionality in Polynomial Chaos Expansions (PCEs). Coupling the sensitivity enhancement to arbitrary Polynomial Chaos allows the formulation to be extended to a wide range of stochastic processes, including multi-modal, fat-tailed, and truncated probability distributions. In so doing, this work addresses two of the barriers to widespread industrial application of PCEs. The method is demonstrated for a number of synthetic test cases, including an uncertainty analysis of a Finite Element structure, determined using Topology Optimisation, with 306 uncertain inputs. We demonstrate that by exploiting sensitivity information, PCEs can feasibly be applied to such problems and through the Sobol sensitivity indices, can allow a designer to easily visualise the spatial distribution of the contributions to uncertainty in the structure.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube