Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Dual-disentangled Deep Multiple Clustering (2402.05310v1)

Published 7 Feb 2024 in cs.CV

Abstract: Multiple clustering has gathered significant attention in recent years due to its potential to reveal multiple hidden structures of the data from different perspectives. Most of multiple clustering methods first derive feature representations by controlling the dissimilarity among them, subsequently employing traditional clustering methods (e.g., k-means) to achieve the final multiple clustering outcomes. However, the learned feature representations can exhibit a weak relevance to the ultimate goal of distinct clustering. Moreover, these features are often not explicitly learned for the purpose of clustering. Therefore, in this paper, we propose a novel Dual-Disentangled deep Multiple Clustering method named DDMC by learning disentangled representations. Specifically, DDMC is achieved by a variational Expectation-Maximization (EM) framework. In the E-step, the disentanglement learning module employs coarse-grained and fine-grained disentangled representations to obtain a more diverse set of latent factors from the data. In the M-step, the cluster assignment module utilizes a cluster objective function to augment the effectiveness of the cluster output. Our extensive experiments demonstrate that DDMC consistently outperforms state-of-the-art methods across seven commonly used tasks. Our code is available at https://github.com/Alexander-Yao/DDMC.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)