Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Convergence for Natural Policy Gradient on Infinite-State Queueing MDPs (2402.05274v2)

Published 7 Feb 2024 in cs.LG

Abstract: A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs). In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm. Convergence results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing results on the convergence of the NPG algorithm are limited to finite-state settings. We study a general class of queueing MDPs, and prove a $O(1/\sqrt{T})$ convergence rate for the NPG algorithm, if the NPG algorithm is initialized with the MaxWeight policy. This is the first convergence rate bound for the NPG algorithm for a general class of infinite-state average-reward MDPs. Moreover, our result applies to a beyond the queueing setting to any countably-infinite MDP satisfying certain mild structural assumptions, given a sufficiently good initial policy. Key to our result are state-dependent bounds on the relative value function achieved by the iterate policies of the NPG algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets