Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IRFuzzer: Specialized Fuzzing for LLVM Backend Code Generation (2402.05256v1)

Published 7 Feb 2024 in cs.SE

Abstract: Modern compilers, such as LLVM, are complex pieces of software. Due to their complexity, manual testing is unlikely to suffice, yet formal verification is difficult to scale. End-to-end fuzzing can be used, but it has difficulties in achieving high coverage of some components of LLVM. In this paper, we implement IRFuzzer to investigate the effectiveness of specialized fuzzing of the LLVM compiler backend. We focus on two approaches to improve the fuzzer: guaranteed input validity using constrained mutations and improved feedback quality. The mutator in IRFuzzer is capable of generating a wide range of LLVM IR inputs, including structured control flow, vector types, and function definitions. The system instruments coding patterns in the compiler to monitor the execution status of instruction selection. The instrumentation not only provides a new coverage feedback called matcher table coverage, but also provides an architecture specific guidance to the mutator. We show that IRFuzzer is more effective than existing fuzzers by fuzzing on 29 mature LLVM backend targets. In the process, we reported 74 confirmed new bugs in LLVM upstream, out of which 49 have been fixed, five have been back ported to LLVM 15, showing that specialized fuzzing provides useful and actionable insights to LLVM developers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube