Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth (2402.05013v1)

Published 7 Feb 2024 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Autoencoders are a prominent model in many empirical branches of machine learning and lossy data compression. However, basic theoretical questions remain unanswered even in a shallow two-layer setting. In particular, to what degree does a shallow autoencoder capture the structure of the underlying data distribution? For the prototypical case of the 1-bit compression of sparse Gaussian data, we prove that gradient descent converges to a solution that completely disregards the sparse structure of the input. Namely, the performance of the algorithm is the same as if it was compressing a Gaussian source - with no sparsity. For general data distributions, we give evidence of a phase transition phenomenon in the shape of the gradient descent minimizer, as a function of the data sparsity: below the critical sparsity level, the minimizer is a rotation taken uniformly at random (just like in the compression of non-sparse data); above the critical sparsity, the minimizer is the identity (up to a permutation). Finally, by exploiting a connection with approximate message passing algorithms, we show how to improve upon Gaussian performance for the compression of sparse data: adding a denoising function to a shallow architecture already reduces the loss provably, and a suitable multi-layer decoder leads to a further improvement. We validate our findings on image datasets, such as CIFAR-10 and MNIST.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: