Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth (2402.05013v1)
Abstract: Autoencoders are a prominent model in many empirical branches of machine learning and lossy data compression. However, basic theoretical questions remain unanswered even in a shallow two-layer setting. In particular, to what degree does a shallow autoencoder capture the structure of the underlying data distribution? For the prototypical case of the 1-bit compression of sparse Gaussian data, we prove that gradient descent converges to a solution that completely disregards the sparse structure of the input. Namely, the performance of the algorithm is the same as if it was compressing a Gaussian source - with no sparsity. For general data distributions, we give evidence of a phase transition phenomenon in the shape of the gradient descent minimizer, as a function of the data sparsity: below the critical sparsity level, the minimizer is a rotation taken uniformly at random (just like in the compression of non-sparse data); above the critical sparsity, the minimizer is the identity (up to a permutation). Finally, by exploiting a connection with approximate message passing algorithms, we show how to improve upon Gaussian performance for the compression of sparse data: adding a denoising function to a shallow architecture already reduces the loss provably, and a suitable multi-layer decoder leads to a further improvement. We validate our findings on image datasets, such as CIFAR-10 and MNIST.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.