Papers
Topics
Authors
Recent
2000 character limit reached

Reconfidencing LLMs from the Grouping Loss Perspective (2402.04957v3)

Published 7 Feb 2024 in cs.CL

Abstract: LLMs, including ChatGPT and LLaMA, are susceptible to generating hallucinated answers in a confident tone. While efforts to elicit and calibrate confidence scores have proven useful, recent findings show that controlling uncertainty must go beyond calibration: predicted scores may deviate significantly from the actual posterior probabilities due to the impact of grouping loss. In this work, we construct a new evaluation dataset derived from a knowledge base to assess confidence scores given to answers of Mistral and LLaMA. Experiments show that they tend to be overconfident. Further, we show that they are more overconfident on some answers than others, \emph{eg} depending on the nationality of the person in the query. In uncertainty-quantification theory, this is grouping loss. To address this, we propose a solution to reconfidence LLMs, canceling not only calibration but also grouping loss. The LLMs, after the reconfidencing process, indicate improved confidence alignment with the accuracy of their responses.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.