Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multimodal Query Suggestion with Multi-Agent Reinforcement Learning from Human Feedback (2402.04867v2)

Published 7 Feb 2024 in cs.IR

Abstract: In the rapidly evolving landscape of information retrieval, search engines strive to provide more personalized and relevant results to users. Query suggestion systems play a crucial role in achieving this goal by assisting users in formulating effective queries. However, existing query suggestion systems mainly rely on textual inputs, potentially limiting user search experiences for querying images. In this paper, we introduce a novel Multimodal Query Suggestion (MMQS) task, which aims to generate query suggestions based on user query images to improve the intentionality and diversity of search results. We present the RL4Sugg framework, leveraging the power of LLMs with Multi-Agent Reinforcement Learning from Human Feedback to optimize the generation process. Through comprehensive experiments, we validate the effectiveness of RL4Sugg, demonstrating a 18% improvement compared to the best existing approach. Moreover, the MMQS has been transferred into real-world search engine products, which yield enhanced user engagement. Our research advances query suggestion systems and provides a new perspective on multimodal information retrieval.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.