Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dual-Path Coupled Image Deraining Network via Spatial-Frequency Interaction (2402.04855v1)

Published 7 Feb 2024 in cs.CV

Abstract: Transformers have recently emerged as a significant force in the field of image deraining. Existing image deraining methods utilize extensive research on self-attention. Though showcasing impressive results, they tend to neglect critical frequency information, as self-attention is generally less adept at capturing high-frequency details. To overcome this shortcoming, we have developed an innovative Dual-Path Coupled Deraining Network (DPCNet) that integrates information from both spatial and frequency domains through Spatial Feature Extraction Block (SFEBlock) and Frequency Feature Extraction Block (FFEBlock). We have further introduced an effective Adaptive Fusion Module (AFM) for the dual-path feature aggregation. Extensive experiments on six public deraining benchmarks and downstream vision tasks have demonstrated that our proposed method not only outperforms the existing state-of-the-art deraining method but also achieves visually pleasuring results with excellent robustness on downstream vision tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.