Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Offline Deep Model Predictive Control (MPC) for Visual Navigation (2402.04797v1)

Published 7 Feb 2024 in cs.RO

Abstract: In this paper, we propose a new visual navigation method based on a single RGB perspective camera. Using the Visual Teach & Repeat (VT&R) methodology, the robot acquires a visual trajectory consisting of multiple subgoal images in the teaching step. In the repeat step, we propose two network architectures, namely ViewNet and VelocityNet. The combination of the two networks allows the robot to follow the visual trajectory. ViewNet is trained to generate a future image based on the current view and the velocity command. The generated future image is combined with the subgoal image for training VelocityNet. We develop an offline Model Predictive Control (MPC) policy within VelocityNet with the dual goals of (1) reducing the difference between current and subgoal images and (2) ensuring smooth trajectories by mitigating velocity discontinuities. Offline training conserves computational resources, making it a more suitable option for scenarios with limited computational capabilities, such as embedded systems. We validate our experiments in a simulation environment, demonstrating that our model can effectively minimize the metric error between real and played trajectories.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)