Papers
Topics
Authors
Recent
2000 character limit reached

Graph Cuts with Arbitrary Size Constraints Through Optimal Transport (2402.04732v2)

Published 7 Feb 2024 in cs.LG

Abstract: A common way of partitioning graphs is through minimum cuts. One drawback of classical minimum cut methods is that they tend to produce small groups, which is why more balanced variants such as normalized and ratio cuts have seen more success. However, we believe that with these variants, the balance constraints can be too restrictive for some applications like for clustering of imbalanced datasets, while not being restrictive enough for when searching for perfectly balanced partitions. Here, we propose a new graph cut algorithm for partitioning graphs under arbitrary size constraints. We formulate the graph cut problem as a Gromov-Wasserstein with a concave regularizer problem. We then propose to solve it using an accelerated proximal GD algorithm which guarantees global convergence to a critical point, results in sparse solutions and only incurs an additional ratio of $\mathcal{O}(\log(n))$ compared to the classical spectral clustering algorithm but was seen to be more efficient.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.