Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Operators with Stochastic Gradient Descent in General Hilbert Spaces (2402.04691v3)

Published 7 Feb 2024 in stat.ML, cs.LG, math.FA, math.ST, and stat.TH

Abstract: This study investigates leveraging stochastic gradient descent (SGD) to learn operators between general Hilbert spaces. We propose weak and strong regularity conditions for the target operator to depict its intrinsic structure and complexity. Under these conditions, we establish upper bounds for convergence rates of the SGD algorithm and conduct a minimax lower bound analysis, further illustrating that our convergence analysis and regularity conditions quantitatively characterize the tractability of solving operator learning problems using the SGD algorithm. It is crucial to highlight that our convergence analysis is still valid for nonlinear operator learning. We show that the SGD estimator will converge to the best linear approximation of the nonlinear target operator. Moreover, applying our analysis to operator learning problems based on vector-valued and real-valued reproducing kernel Hilbert spaces yields new convergence results, thereby refining the conclusions of existing literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com