Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Validity-Preserving Delta Debugging via Generator Trace Reduction (2402.04623v3)

Published 7 Feb 2024 in cs.SE

Abstract: Reducing test inputs that trigger bugs is crucial for efficient debugging. Delta debugging is the most popular approach for this purpose. When test inputs need to conform to certain specifications, existing delta debugging practice encounters a validity problem: it blindly applies reduction rules, producing a large number of invalid test inputs that do not satisfy the required specifications. This overall diminishing effectiveness and efficiency becomes even more pronounced when the specifications extend beyond syntactical structures. Our key insight is that we should leverage input generators, which are aware of these specifications, to generate valid reduced inputs, rather than straightforwardly performing reduction on test inputs. In this paper, we propose a generator-based delta debugging method, namely GReduce, which derives validity-preserving reducers. Specifically, given a generator and its execution, demonstrating how the bug-inducing test input is generated, GReduce searches for other executions on the generator that yield reduced, valid test inputs. The evaluation results on five benchmarks (i.e., graphs, DL models, JavaScript programs, SymPy, and algebraic data types) show that GReduce substantially outperforms state-of-the-art syntax-based reducers including Perses and T-PDD, and also outperforms QuickCheck, SmartCheck, as well as the state-of-the-art choice-sequence-based reducer Hypothesis, demonstrating the effectiveness, efficiency, and versatility of GReduce.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: