Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces (2402.04613v2)

Published 7 Feb 2024 in stat.ML, cs.LG, math.FA, and math.OC

Abstract: Most commonly used $f$-divergences of measures, e.g., the Kullback-Leibler divergence, are subject to limitations regarding the support of the involved measures. A remedy consists of regularizing the $f$-divergence by a squared maximum mean discrepancy (MMD) associated with a characteristic kernel $K$. In this paper, we use the so-called kernel mean embedding to show that the corresponding regularization can be rewritten as the Moreau envelope of some function in the reproducing kernel Hilbert space associated with $K$. Then, we exploit well-known results on Moreau envelopes in Hilbert spaces to prove properties of the MMD-regularized $f$-divergences and, in particular, their gradients. Subsequently, we use our findings to analyze Wasserstein gradient flows of MMD-regularized $f$-divergences. Finally, we consider Wasserstein gradient flows starting from empirical measures. We provide proof-of-the-concept numerical examples for $f$-divergences with both infinite and finite recession constant.

Citations (6)

Summary

We haven't generated a summary for this paper yet.