Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification (2402.04582v1)
Abstract: We introduce a method to construct a stochastic surrogate model from the results of dimensionality reduction in forward uncertainty quantification. The hypothesis is that the high-dimensional input augmented by the output of a computational model admits a low-dimensional representation. This assumption can be met by numerous uncertainty quantification applications with physics-based computational models. The proposed approach differs from a sequential application of dimensionality reduction followed by surrogate modeling, as we "extract" a surrogate model from the results of dimensionality reduction in the input-output space. This feature becomes desirable when the input space is genuinely high-dimensional. The proposed method also diverges from the Probabilistic Learning on Manifold, as a reconstruction mapping from the feature space to the input-output space is circumvented. The final product of the proposed method is a stochastic simulator that propagates a deterministic input into a stochastic output, preserving the convenience of a sequential "dimensionality reduction + Gaussian process regression" approach while overcoming some of its limitations. The proposed method is demonstrated through two uncertainty quantification problems characterized by high-dimensional input uncertainties.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.