Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification (2402.04582v1)

Published 7 Feb 2024 in stat.AP and stat.ML

Abstract: We introduce a method to construct a stochastic surrogate model from the results of dimensionality reduction in forward uncertainty quantification. The hypothesis is that the high-dimensional input augmented by the output of a computational model admits a low-dimensional representation. This assumption can be met by numerous uncertainty quantification applications with physics-based computational models. The proposed approach differs from a sequential application of dimensionality reduction followed by surrogate modeling, as we "extract" a surrogate model from the results of dimensionality reduction in the input-output space. This feature becomes desirable when the input space is genuinely high-dimensional. The proposed method also diverges from the Probabilistic Learning on Manifold, as a reconstruction mapping from the feature space to the input-output space is circumvented. The final product of the proposed method is a stochastic simulator that propagates a deterministic input into a stochastic output, preserving the convenience of a sequential "dimensionality reduction + Gaussian process regression" approach while overcoming some of its limitations. The proposed method is demonstrated through two uncertainty quantification problems characterized by high-dimensional input uncertainties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com