Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Boosting Reinforcement Learning Algorithms in Continuous Robotic Reaching Tasks using Adaptive Potential Functions (2402.04581v1)

Published 7 Feb 2024 in cs.RO

Abstract: In reinforcement learning, reward shaping is an efficient way to guide the learning process of an agent, as the reward can indicate the optimal policy of the task. The potential-based reward shaping framework was proposed to guarantee policy invariance after reward shaping, where a potential function is used to calculate the shaping reward. In former work, we proposed a novel adaptive potential function (APF) method to learn the potential function concurrently with training the agent based on information collected by the agent during the training process, and examined the APF method in discrete action space scenarios. This paper investigates the feasibility of using APF in solving continuous-reaching tasks in a real-world robotic scenario with continuous action space. We combine the Deep Deterministic Policy Gradient (DDPG) algorithm and our proposed method to form a new algorithm called APF-DDPG. To compare APF-DDPG with DDPG, we designed a task where the agent learns to control Baxter's right arm to reach a goal position. The experimental results show that the APF-DDPG algorithm outperforms the DDPG algorithm on both learning speed and robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.