Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms (2402.04054v2)

Published 6 Feb 2024 in cs.LG and stat.ML

Abstract: We introduce a new framework for studying meta-learning methods using PAC-Bayesian theory. Its main advantage over previous work is that it allows for more flexibility in how the transfer of knowledge between tasks is realized. For previous approaches, this could only happen indirectly, by means of learning prior distributions over models. In contrast, the new generalization bounds that we prove express the process of meta-learning much more directly as learning the learning algorithm that should be used for future tasks. The flexibility of our framework makes it suitable to analyze a wide range of meta-learning mechanisms and even design new mechanisms. Other than our theoretical contributions we also show empirically that our framework improves the prediction quality in practical meta-learning mechanisms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets