On dimensionality of feature vectors in MPNNs (2402.03966v2)
Abstract: We revisit the classical result of Morris et al.~(AAAI'19) that message-passing graphs neural networks (MPNNs) are equal in their distinguishing power to the Weisfeiler--Leman (WL) isomorphism test. Morris et al.~show their simulation result with ReLU activation function and $O(n)$-dimensional feature vectors, where $n$ is the number of nodes of the graph. By introducing randomness into the architecture, Aamand et al.~(NeurIPS'22) were able to improve this bound to $O(\log n)$-dimensional feature vectors, again for ReLU activation, although at the expense of guaranteeing perfect simulation only with high probability. Recently, Amir et al.~(NeurIPS'23) have shown that for any non-polynomial analytic activation function, it is enough to use just 1-dimensional feature vectors. In this paper, we give a simple proof of the result of Amit et al.~and provide an independent experimental validation of it.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.