Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On dimensionality of feature vectors in MPNNs (2402.03966v2)

Published 6 Feb 2024 in cs.LG

Abstract: We revisit the classical result of Morris et al.~(AAAI'19) that message-passing graphs neural networks (MPNNs) are equal in their distinguishing power to the Weisfeiler--Leman (WL) isomorphism test. Morris et al.~show their simulation result with ReLU activation function and $O(n)$-dimensional feature vectors, where $n$ is the number of nodes of the graph. By introducing randomness into the architecture, Aamand et al.~(NeurIPS'22) were able to improve this bound to $O(\log n)$-dimensional feature vectors, again for ReLU activation, although at the expense of guaranteeing perfect simulation only with high probability. Recently, Amir et al.~(NeurIPS'23) have shown that for any non-polynomial analytic activation function, it is enough to use just 1-dimensional feature vectors. In this paper, we give a simple proof of the result of Amit et al.~and provide an independent experimental validation of it.

Citations (5)

Summary

We haven't generated a summary for this paper yet.