Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Do we need rebalancing strategies? A theoretical and empirical study around SMOTE and its variants (2402.03819v5)

Published 6 Feb 2024 in stat.ML and cs.LG

Abstract: Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing strategy for handling imbalanced tabular data sets. However, few works analyze SMOTE theoretically. In this paper, we derive several non-asymptotic upper bound on SMOTE density. From these results, we prove that SMOTE (with default parameter) tends to copy the original minority samples asymptotically. We confirm and illustrate empirically this first theoretical behavior on a real-world data-set.bFurthermore, we prove that SMOTE density vanishes near the boundary of the support of the minority class distribution. We then adapt SMOTE based on our theoretical findings to introduce two new variants. These strategies are compared on 13 tabular data sets with 10 state-of-the-art rebalancing procedures, including deep generative and diffusion models. One of our key findings is that, for most data sets, applying no rebalancing strategy is competitive in terms of predictive performances, would it be with LightGBM, tuned random forests or logistic regression. However, when the imbalance ratio is artificially augmented, one of our two modifications of SMOTE leads to promising predictive performances compared to SMOTE and other state-of-the-art strategies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.