Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Practical Diversified Recommendation with Controllable Category Diversity Framework (2402.03801v1)

Published 6 Feb 2024 in cs.IR

Abstract: Recommender systems have made significant strides in various industries, primarily driven by extensive efforts to enhance recommendation accuracy. However, this pursuit of accuracy has inadvertently given rise to echo chamber/filter bubble effects. Especially in industry, it could impair user's experiences and prevent user from accessing a wider range of items. One of the solutions is to take diversity into account. However, most of existing works focus on user's explicit preferences, while rarely exploring user's non-interaction preferences. These neglected non-interaction preferences are especially important for broadening user's interests in alleviating echo chamber/filter bubble effects.Therefore, in this paper, we first define diversity as two distinct definitions, i.e., user-explicit diversity (U-diversity) and user-item non-interaction diversity (N-diversity) based on user historical behaviors. Then, we propose a succinct and effective method, named as Controllable Category Diversity Framework (CCDF) to achieve both high U-diversity and N-diversity simultaneously.Specifically, CCDF consists of two stages, User-Category Matching and Constrained Item Matching. The User-Category Matching utilizes the DeepU2C model and a combined loss to capture user's preferences in categories, and then selects the top-$K$ categories with a controllable parameter $K$.These top-$K$ categories will be used as trigger information in Constrained Item Matching. Offline experimental results show that our proposed DeepU2C outperforms state-of-the-art diversity-oriented methods, especially on N-diversity task. The whole framework is validated in a real-world production environment by conducting online A/B testing.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.